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Abstract

This sutdy examines how the dynamic relationships between rival cryptocurrencies
change over time and are affected by shocks. In particular, using a vector autoregressive
model (VAR), Granger–causality test, and impulse response analysis, the price dynamics
of Bitcoin, Litecoin, and Ripple are investigated by allowing multiple structural breaks.
The data used in the analyses cover daily time–series observations over the period of April
2014-July 2018. Using the Qu and Perron (2007) methodology in a VAR shows that there
are two strong structural breaks on November 12, 2015 and September 28, 2016. Thus,
the data are split into three segments. The time–series analyses across segments suggest
the following results: (1) the Granger–causality from the prices of other coins to Ripple
price is gaining strength; (2) the response of each coin to a shock in Bitcoin price is same
across segments; (3) in response to a shock in Litecoin price, the impact on Bitcoin price is
decreasing over time but the effect on Ripple price is increasing; and (4) the impacts on
Bitcoin and Litecoin prices are falling over time in response to a shock in Ripple price.
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1 Introduction

After the Great Recession had started due to the crash in the housing market, many individuals and
companies lost money. At that time the majority of people openly distrusted the global financial
system and were frustrated with the third–party institutions that charge high commissions on
money transfers and keep a detailed record of transactions. In October 2008, a programmer under
the pseudonym Satoshi Nakamoto1 came up with a novel idea: a decentralized digital currency
that can be transferred online via a peer–to–peer network with significantly lower transaction
costs (Nakamoto, 2008). The decentralized feature of the currency allows its users to interact
with one another anonymously and without third–party intervention. In essence, this feature
is the Nakamoto’s response to the global financial system as well as to the role of third–party
institutions in mediating financial transactions. In January 2009, Satoshi launched the network
and the first units of the digital currency, known as Bitcoin.

The Bitcoin network operates on the Bitcoin protocol, which is based on cryptographic
methods and available as an open–source software. It allows users to store or transfer Bitcoins
securely without an intermediary. In simple terms, users can transfer Bitcoins from computer to
computer via a system of cryptographic hashes, and then keep them secure in a digital wallet with
cryptographic digital signatures. Therefore, instead of relying on trusted third–party institutions,
the Bitcoin network uses cryptographic proof to process transactions, verify the legitimacy of
Bitcoins, and spread the verified transactions among the network.

Fundamentally, the Bitcoin network is a massive decentralized and fully distributed public
ledger, called blockchain. Each Bitcoin transaction that has ever occurred since the beginning
of the genesis block is recorded in the blockchain to prevent double–spending. The safety and
integrity of the Bitcoin blockchain are maintained via a mining process that requires powerful
computers to solve complicated algorithms. The mining process first helps to validate and
timestamp transactions. Then, it adds transactions to the blockchain. A network member who
performs the mining process is called miner. New Bitcoins are created digitally during the mining
process and distributed to miners as a financial incentive, often called reward, for their effort to
maintain the security and integrity of the blockchain. The amount of reward per block halves
roughly every four years, called halving, to keep the number of Bitcoins within certain limits.
The halving feature is essentially a part of the predictable and transparent monetary policy that
governs the supply of Bitcoin.

As Bitcoin and the blockchain technology gained interest in the public domain, programmers
utilized from the open–source Bitcoin protocol to create alternative digital currencies, called
altcoins. These include coins created with better technology and security measures or developed
for specific purposes or demographic groups. Due to the application of cryptographic methods,
Bitcoin and altcoins are often referred to as cryptocurrency. In general terms, a cryptocurrency

1The identity of Satoshi remains unknown as of July 30, 2017, and it is not known whether Satoshi is a person
or a group. See Chuen (2015), for the claims about the true identity of Satoshi.
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is a digital currency designed to serve as a medium of exchange using cryptography for
secure transactions. With the emergence and success of Bitcoin, cryptocurrencies have gained
prominence in the public and media and shown an unprecedented growth over the last few years.
As of July 2017, more than 980 cryptocurrencies exist with a total market capitalization of
$89 billion.2 Using the first mover advantage, Bitcoin is still the most popular and valuable
cryptocurrency.

Cryptocurrencies are not used only for a medium of exchange. Similar to any other fiat
currency, they are used as investment asset by individuals and financial institutions. However,
due to the unregulated environment and extreme price volatility of cryptocurrencies, they are
frequently used by speculators to generate easy money in a short time. Some studies have
investigated the speculative behavior of Bitcoin and provide strong statistical evidence that
Bitcoin contains a substantial speculative bubble component.3 However, a comprehensive
examination of historical Bitcoin prices shows that the extreme price fluctuations have often
originated after some abrupt structural breaks, which may have risen in response to security
breaches, government regulations, a reward halving, and even a darknet market involvement.

During the short history of Bitcoin, it experienced various extreme events. Bitcoin was
released in January 2009, and until April 2010 there was no exchange or market for it. In May
2010, Laszlo Hanyecz made the first real–world transaction buying two pizzas in Jacksonville,
Florida for 10, 000 Bitcoins. In June 2011, there was a massive security breach in MtGox, which
was the most significant trading platform for Bitcoin at that time, and the Bitcoin price dropped
from $32 to $2. Until August 2012, the price gradually increased to $15. With the beginning
of 2013, a price rally started and continued until $266 in April 2013. In October 2013, the
price dropped to $110 since FBI seized $28.5 million worth of Bitcoins from the accounts of a
website called Silk Road, an online black market and the first darknet market best known as a
platform for selling illegal drugs. After the Silk Road rumors ended, the price surged during
the end of 2013 and reached to $1242. During 2014 and until the end of 2015, the Bitcoin
price plunged to as low as $200 due to the bankruptcy of MtGox and a false report regarding
Bitcoin ban in China. During May 2016, a hype started about the incoming halving, which was
expected to occur in July 2016. Since then, the price has spiked to $2739 as of July 30, 2017.
See www.coindesk.com/price/ for historical Bitcoin prices.4

Recently, Bitcoin’s prominence, extreme price volatility, and the essential features such as
decentralized network and cryptographic security have grabbed the attention of researchers. In
overall, most studies of Bitcoin have been carried out in four main areas: (1) the speculative
behavior of the Bitcoin price; (2) the microeconomic and macroeconomic determinants of

2Figure 6 illustrates the course of the number of cryptocurrencies listed on www.coinmarketcap.com since
April 28, 2013. The top twenty cryptocurrencies by market capitalization are presented in Table 19.

3See, among others, Malhotra and Maloo (2014), Ciaian et al. (2015), Bouoiyour and Selmi (2015), and Cheah
and Fry (2015).

4As the Bitcoin prices have been surging recently, it is impossible to precisely show the structural breaks
occurred during the relatively low price levels in a static figure. Thus, interested readers should visit www.coindesk.
com/price/ for historical bitcoin prices in an interactive figure.
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the Bitcoin price; (3) cointegration relations among the Bitcoin prices in different exchange
platforms; and (4) cointegration and dynamic relationships between the Bitcoin prices and some
macroeconomic variables such as Dow Jones Industry Average, oil price, Federal Funds Rate,
and gold price.5 Although extensive research has been carried out on Bitcoin, there is only one
study that has examined structural breaks in the Bitcoin prices. It is an astonishing gap in the
literature considering the previously mentioned extreme events that may have caused structural
breaks. Based on the Perron (1997) endogenous structural break test, Malhotra and Maloo (2014)
provide evidence that the most significant breakpoint is in October 2013, which coincides with
the crash in Bitcoin price after the Silk Road event.

In the cryptocurrency world, Bitcoin is often considered as a primary gateway that allows
investors and speculators to enter various cryptocurrency markets and trade altcoins since the
majority of the altcoins are traded only against Bitcoin. In essence, this fundamental connection
creates an inherent relationship between the prices of Bitcoin and altcoins. An understanding
of this relationship is of utmost importance for investors. However, in the literature, there is
only one study that has investigated the price dependencies between various cryptocurrencies,
especially Bitcoin and altcoins. It is a surprising gap considering the variety of altcoins and how
their prices are related to the Bitcoin price. Using empirical and Gaussian copulas, Osterrieder
et al. (2017) analyze correlations and tail dependencies among cryptocurrencies as well as their
statistical properties. They provide statistical evidence that cryptocurrencies exhibit large tail
dependencies, especially that share the same underlying technology.

Instead of focusing only on Bitcoin or examining the tail dependencies of various cryp-
tocurrencies, this study diverges from the primary focus of the previous research and aims to
fill the two gaps in the literature (i.e., structural break and inherent relationship between the
prices of Bitcoin and altcoins). It seeks to understand how the dynamic relationships between
rival cryptocurrencies change over time and are affected by shocks. In particular, the price
dynamics of Bitcoin, Litecoin, and Ripple are investigated by allowing multiple structural
breaks.6 Understanding the price dynamics between these rival markets and how they change
over time can help small investors to take trade positions in advance and reduce risks by hedging
in highly speculative cryptocurrency markets.

In summary, the dynamics of these markets are investigated in three steps. In the first step, to
choose a multi–equation time series model that fits the entire data, unit root and stationary tests
are performed assuming no structural breaks. Then, a vector autoregressive model is constructed.
In the second step, two structural breaks are endogenously estimated for the vector autoregressive
model built in the first step using the Qu and Perron (2007) methodology.7 In the third step, the
data are split into three segments on the estimated break dates. Then, a vector autoregressive

5See, among other, Fink and Johann, 2014; Malhotra and Maloo, 2014; Ciaian et al., 2015; Georgoula et al.,
2015; Kristoufek, 2015; Bouoiyour and Selmi, 2015; Cheah and Fry, 2015; Bouoiyour and Selmi, 2016; Wang
et al., 2016; Zhu et al., 2017; Li and Wang, 2017.

6Figure 1 and Figure 2 display that prices in these markets move together since 2014.
7See Section 3 for the details of the Qu and Perron (2007) methodology.
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model is carried out along with causality tests for each segment. Finally, impulse response
analysis is performed to evaluate the nature of dynamic relations inherent in the estimates of the
model for each segment.

The primary results of this study can be summarized as follows: (1) the application of Qu and
Perron (2007) methodology in a vector autoregressive model concludes that there are two robust
structural breaks in 11-12-2015 and 09-28-2016 (i.e., November 12, 2015 and September 28,
2016), which appear to have affected the price dynamics between the three rival cryptocurrencies;
(2) the Granger–causality from the prices of other coins to Ripple price is gaining strength; (3)
the response of each coin to a shock in Bitcoin price is same across segments; (4) in response to
a shock in Litecoin price, the impact on Bitcoin price is decreasing over time but the effect on
Ripple price is increasing; and (5) the impacts on Bitcoin and Litecoin prices are falling over
time in response to a shock in Ripple price.

The paper proceeds as follows: Section 2 presents the relevant data sources; Section 3 presents
the empirical methods; Section 5 provides the results of structural break tests using the entire
data as well as the estimation and results for each segment; Section 6 discusses the results; and
Section 7 concludes.

2 Data Descriptions

The analyses of this study are conducted with a daily dataset collected by BraveNewCoin (2017)
and distributed by Quandl (2017). Table 1 presents the descriptive summary of data along with
the sources and number of observations in the raw data. The data consist of historical global price
indices for cryptocurrencies based on volume–weighted average prices from multiple exchanges.
Specifically, BraveNewCoin (2017) calculates a global price index for each cryptocurrency every
day. It is based on data aggregated from all exchanges8 trading in that cryptocurrency for any
other form of currency. For each currency market, a volume–weighted average is obtained from
the latest price reported from each exchange. To derive the index, each value is converted to
US dollars using current international fiat conversion rates and an overall volume–weighted
average price is calculated based on the total volume in each market. BraveNewCoin (2017)’s
data represents the cleanest and the most comprehensive cryptocurrency data with extensive
history.

The BraveNewCoin (2017)’s data is downloaded from its starting date, 04-01-2014, until
07-29-2017. In order to analyze the price dynamics between rival cryptocurrencies, this study
uses three out of the four largest coins in terms of the market capitalization as of July 30, 2017.
The selected cryptocurrencies are Bitcoin, Litecoin, and Ripple. An important note is that the
decision to analyze only three coins is taken since the scope of this research would have been
too broad if there would have been an analysis of all cryptocurrencies. Bitcoin is selected since

8BraveNewCoin (2017) surveys more than a hundred trading platforms for cryptocurrency/fiat trading pairs.
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it is the coin that started the whole cryptocurrency era, and also it is still the most used and
popular cryptocurrency. Litecoin and Ripple are particularly selected since they have existed on
the starting date of the BraveNewCoin (2017)’s data, which ensures that there are sufficiently
long data to analyze the price dynamics. Out of the top four cryptocurrencies, Ethereum is
intentionally omitted due to its late release on July 30, 2015, compared to the selected coins.

The top twenty cryptocurrencies by market capitalization and monthly volume are presented
in Table 19 and Table 20 respectively. Among the selected coins, Bitcoin is the most valuable
coin traded at $2739.43 with a %50.43 market capitalization share as of July 30, 2017. Litecoin
and Ripple are traded at $40.96 and $0.17 with a %2.39 and %7.13 market capitalization share
respectively. Moreover, these coins are in the top five cryptocurrencies regarding monthly volume.
In total, the selected cryptocurrencies represent %59.95 and %45.93 of the market capitalization
and monthly volume share as of July 30, 2017. Figure 7 and Figure 8 can be exploited to compare
the selected coins and all other coins in terms of market capitalization over time. These figures
show that the selected coins have dominated the cryptocurrency market since 2013, regarding
market capitalization. Similarly, comparing these coins regarding volume leads to the same
conclusion as shown in Figure 9 and Figure 10.

Finally, all of the price series9 are transformed into the rate of return form, and only the
transformed forms are used for analyses. The main reason for this approach is the vast differences
between the scale of coin prices. Adopting the rate of return form for each variable establishes a
common scale for all price series. Table 2 presents the summary statistics of variables including
the transformed forms. Figure 1 presents plots of all variables.10 For easy comparison, all
variables are plotted together in Figure 2.11 The blue dotted lines indicate the estimated structural
break dates (i.e., 11-12-2015 and 09-28-2016) using the Qu and Perron (2007) methodology.
The red dotted line represents the 2nd halving of the Bitcoin blockchain, 07-09-2016.12

In order to prevent repetition, in the text, tables, and figures of the subsequent sections, a
symbol is designated to the rate of return form of each series. These symbols are BTC for Bitcoin,
LTC for Litecoin, and XRP for Ripple.

All analyses performed in this study, including the data downloading and cleaning parts, are
completed using open source software R. Appendix A presents the R version information along
with the used packages. GAUSS software is used only for estimating the multiple structural break
dates with the Qu and Perron (2007) methodology. Appendix B presents the GAUSS version
information.

9Throughout this study, series, time series variable, and variable are used interchangeably to refer to an
individual time series in the data.

10Figure 11 presents plots for the same variables in the rate of return form.
11Figure 12 presents the plot for the same variables in the rate of return form.
12The 1st halving of the Bitcoin blockchain occurred in 11-28-2012.
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3 Empirical Methods

This section presents the empirical methods performed on the entire data as well as on each
segment after the data are split into three. The section proceeds as follows: Section 3.1 presents
the unit root and stationary tests; Section 3.2 briefly summarizes the vector autoregressive model;
and Section 3.3 through Section 3.5 cover the details of causality and model diagnostic tests as
well as the impulse response analysis for interpreting the dynamics of the model.

3.1 Unit Root and Stationary Tests

Unit root testing of a time series variable is often the first step in time series analyses. If any
of the variables in a time series regression has a unit root13, then there might be a spurious
regression problem as pointed out by Granger and Newbold (1974) and Phillips (1986). In order
to avoid the spurious regression problem, a non–stationary process should be transformed into a
stationary process. Detrending and differencing can help to stabilize the mean of a time series by
eliminating trend and seasonality. Thus, these methods can yield a stationary process. However,
the correct transformation method depends on whether the series is a trend–stationary process
(TSP) or a difference–stationary process (DSP). A DSP should be differenced whereas a TSP
should be detrended by regressing it on deterministic functions of time. Applying a wrong
method might cause over or under differencing depending on the true data generating process
(DGP) and result in specification error in time series regressions.

Before testing each series for unit root, it is better to investigate whether there is a seasonal
unit root in the variable of interest. Two methods performed for testing seasonal unit root
are Osborn–Chui–Smith–Birchenhall test by Osborn et al. (1988) and Canova–Hansen test by
Canova and Hansen (1995).

A joint application of two groups of tests is conducted to test each series for unit root. In the
first group, commonly used unit root tests are applied. These tests are Augmented Dickey–Fuller
(ADF) unit root test by Dickey and Fuller (1979, 1981), Phillips–Perron (PP) unit root test
by Phillips and Perron (1988), and Elliott–Rothenberg–Stock (ERS) unit root test by Elliott
et al. (1996).14 In the second group, Kwiatkowski–Phillips–Schmidt–Shin stationary test by
Kwiatkowski et al. (1992) is performed.15 This joint application is implemented as a confirmatory
analysis such that a non–rejection in the first group of tests confirms a rejection in the second
group of tests.

An important practical issue for the unit root and stationarity tests is the selection of the
lag length 𝑝. If 𝑝 is too small, then the remaining serial correlation in errors will bias the test

13In the time series literature, the following groups of concepts are used interchangeably: (1) stationary and
integrated order of zero (i.e., 𝐼 (0)); and (2) unit root, non–stationary, and integrated order of one (i.e., 𝐼 (1))
assuming that the variable of interest has a single unit root.

14In ADF, PP, and ERS unit root tests, the null hypothesis is that series is non–stationary.
15In KPSS stationary test, the null hypothesis is that series is stationary.
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whereas if 𝑝 is too large, then the power of a test will suffer. Therefore, various lag length
selection criteria are considered and employed in all tests.

The conventional unit root tests presented above require prior knowledge about the DGP. For
instance, inappropriate exclusion of an intercept or a trend leads to biased coefficient estimates
and causes size problems whereas inappropriate inclusion reduces the power of a test. Thus,
these unit root tests work better when there is a priori knowledge about the DGP. Since the form
of the DGP is entirely unknown to this study, Enders’ ADF Procedure (EAP) by Enders (2004)
is applied to reveal whether the variable of interest is a DSP or a TSP while testing for unit root
as well. In summary, EAP performs several ADF unit root tests in a nested fashion. It starts with
the least restrictive model (i.e., with intercept and trend) and proceeds sequentially until the most
restrictive model (i.e., without any deterministic parts).16

For each series, EAP is performed with three lag length selection criteria which are Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), and Ng–Perron–Schwert
(NPS).17 The NPS is a backward lag length selection procedure performed in several steps: (1)
define an upper bound, 𝑝𝑚𝑎𝑥 , for the lag length 𝑝 and set 𝑝 = 𝑝𝑚𝑎𝑥 , then use Schwert (1989)’s
rule of thumb to determine the 𝑝𝑚𝑎𝑥 with the integer of 12 4

√︁
𝑁/100 value, where 𝑁 is the length

of a series; (2) estimate ADF unit root test regression with 𝑝; and (3) if |t-value(𝑝) | > 1.6,
perform ADF unit root test with 𝑝; otherwise, reduce 𝑝 by one and go back to the previous step.

PP unit root test is essentially a modification of ADF unit root test. It is based on a
nonparametric correction to account for serial correlation. Although ADF and PP unit root tests
are asymptotically equivalent, they might differ substantially in finite samples due to the different
ways of correcting serial correlation. PP unit root test tends to be more powerful than ADF unit
root test. On the other hand, PP unit root test is more sensitive to model misspecification, and it
can have severe size distortions when autocorrelation of the error terms is negative. In this study,
PP unit root test is performed under two models (i.e., a model with constant or trend) and with
four lag lengths. Additional to AIC and BIC, two other methods are employed for selecting the
lag length. These methods are commonly used in the literature and defined as Long and Short
with the integer of 12 4

√︁
𝑁/100 and 4 4

√︁
𝑁/100 values respectively, where 𝑁 is the length of a

series.
ERS unit root test is another modification of ADF unit root test. It first detrends a time

series with Generalized Least Squares and then applies ADF unit root test. ERS unit root test is
considered as an efficient unit root test since it has substantially higher power than ADF and PP
unit root tests especially when the root is close to unity and an unknown mean or trend is present.
Elliott et al. (1996) show that it has the best overall performance concerning small–sample size
and power. Thus, ERS unit root test is performed under two models and with four lag lengths as

16The whole procedure can be found in “Supplementary Manual to Accompany, Applied Econometric Time
Series (4th Edition) by Walter Enders” at page 63-66 (see URL: https://goo.gl/hd7uHN) and in Enders (2004)
at page 194-198.

17See Akaike (1974, 1998) for AIC, Schwarz et al. (1978) and Rissanen (1978) for BIC, and Schwert (1989) and
Ng and Perron (2001) for NPS.
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in the PP unit root test.
Power of ADF and PP unit root tests are low if the variable of interest is a stationary process

with a root close to the non–stationary boundary. One way to get around the problem is to use a
stationarity test such as KPSS stationary test. Thus, KPSS stationary test is performed under
two models and with four lag lengths as in the PP and ERS unit root tests. In KPSS stationary
test; however, Long and Short indicate the lag length decided with the integer of 10

√
𝑁/14 and

3
√
𝑁/13 values respectively, where 𝑁 is the length of a series.

3.2 Vector Autoregressive Model

The Vector autoregressive model (VAR) was introduced by Sims (1980) as a technique to
characterize the joint dynamic behavior among a set of variables. It has become a prevalent
method of time series modeling since then.18 VAR is often considered as an alternative to a large
simultaneous equations model that does not account for the rich dynamic structure in time series
data (Lütkepohl, 2006).

VAR typically treats all variables as a priori endogenous. Hence, it accounts for Sims’ critique
that the exogeneity assumptions for some variables in a simultaneous equations model are ad hoc
and often not backed by fully developed theories. The only prior knowledge required in a VAR is
a set of variables which can be hypothesized to affect each other intertemporally. Therefore, the
estimation of VAR does not require as much information about the forces affecting a variable as
do structural models with simultaneous equations. Based on this feature, Sims (1980) advocates
the use of VAR as a theory–free method to estimate economic relationships.

VAR is a 𝑘-variable and 𝑘-equation linear model in which each variable is in turn explained
by the lagged values of all variables and the error term. So, it is a multivariate version of a
univariate autoregressive model with a single equation. The simple framework of VAR provides
a systematic way to capture rich dynamics in multiple time series along with a statistical toolkit
(e.g., impulse response analysis) that is easy to use and interpret.

A 𝑘-dimensional 𝑝th-order VAR can be defined as

yt = c + 𝐴1yt−1 + · · · + 𝐴𝑝yt−p + 𝜀t (1)

where 𝑝 is the lag length; 𝑇 is the sample size; 𝑡 indicates a temporal observation for 𝑡 =

(1, . . . , 𝑇); 𝑘 is the number of endogenous time series variables and the total number of
equations; yt = (𝑦1𝑡 , . . . , 𝑦𝑘𝑡)′ is a 𝑘 × 1 vector for a set of 𝑘 endogenous time series variables;
c = (𝑐1, . . . , 𝑐𝑘 )′ is a 𝑘 × 1 vector of constants allowing for the possibility of a nonzero mean
𝐸 (yt); 𝐴𝑖’s are 𝑘 × 𝑘 coefficient matrices for 𝑖 = (1, . . . , 𝑝); and 𝜀t = (𝜀1𝑡 , . . . , 𝜀𝑘𝑡)′ is a 𝑘 × 1
vector of errors with zero mean white noise process and time invariant positive definite covariance
matrix 𝐸 (𝜀t𝜀

′
t) = Σ𝜀, that is 𝜀t

𝑖𝑖𝑑∼ (0, Σ𝜀).19 It is possible to add additional exogenous variables

18For a detailed literature review of VAR, see Watson (1994) and Lütkepohl (2005, 2011).
19Vectors are assigned by small bold letters and matrices by capital letters. Scalars are written out in small letters
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(e.g., time trends and seasonal dummies) to any multiple–equation time series model. However,
throughout this study, only the constant is included as an exogenous variable. The model in Eq. 1
is briefly called VAR(𝑝) and can be estimated with standard ordinary least squares (OLS) and
ML methods.

The process of choosing the lag length of VAR requires particular attention since coefficient
inference, impulse response analysis and other formal tests depend on it. Choosing a lag length
too small can lead to size distortions in formal tests whereas a too large lag length may imply
reductions in power (Lütkepohl, 2005). Therefore, considering various lag lengths may provide
useful insights. In the literature, information criteria such as AIC and BIC are often used for
selecting the lag length of VAR. However, the present study considers only BIC for the lag length
selection in all of the time series models and the related formal tests since AIC often estimates a
lag length that is too large. For the VAR presented in Eq. 1, BIC is defined as

BIC(𝑝) = ln det
(
Σ̂𝜀 (𝑝)

)
+ ln𝑇

𝑇
𝑝𝑘2 (2)

where Σ̂𝜀 (𝑝) = 𝑇−1∑𝑇
𝑡=1𝜀t𝜀t

′; and the other notations are as in Eq. 1.
Traditionally, VAR is designed for stationary variables. The underlying reason for this

convention relates to one of the critical characteristics of VAR, that is, the stability of the model.
VAR is stable if the following condition holds.

det(𝐼𝑘 − 𝐴1𝑧 − · · · − 𝐴𝑝𝑧
𝑝) ≠ 0 for |𝑧 | ≤ 1 (3)

where 𝐼𝑘 is a 𝑘 × 𝑘 identity matrix; and the other notations are as in Eq. 1. The condition states
that VAR is stable if the polynomial defined in Eq. 3 has no roots in and on the complex unit
circle, which can be satisfied by having stationary variables only. Whereas, VAR is not stable, if
the polynomial has a unit root (e.g., the determinant is zero for 𝑧 = 1) due to some non–stationary
variables in the model. Therefore, all variables have to be stationary to ensure the stability of
VAR.

3.3 Granger–Causality Tests

The concept of Granger–causality was introduced by Granger (1969) and became quite popular
in the time series literature due to its easy application in the context of VAR. According to
Granger–causality, if a time series 𝑦1𝑡 Granger–causes a time series 𝑦2𝑡 , then the past values
of 𝑦1𝑡 should contain information that helps to predict 𝑦2𝑡 above and beyond the information
contained in the past values of 𝑦2𝑡 alone. In a general sense, it is a statistical hypothesis test
(e.g., through a series of F–tests on the lagged values of 𝑦1𝑡 and 𝑦2𝑡) for determining whether the
series 𝑦1𝑡 is useful in forecasting 𝑦2𝑡 .

which are possibly subscripted.
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To test for Granger–causality between two stationary time series, consider a 2–dimensional
version of VAR(𝑝) presented in Eq. 1 and rewrite it with the matrix notation as follows:[

𝑦1𝑡

𝑦2𝑡

]
=

[
𝑐1

𝑐2

]
+

𝑝∑︁
𝑖=1

[
𝐴11,𝑖 𝐴12,𝑖

𝐴21,𝑖 𝐴22,𝑖

] [
𝑦1,𝑡−𝑖

𝑦2,𝑡−𝑖

]
+
[
𝜀1𝑡

𝜀2𝑡

]
(4)

Then, 𝑦2𝑡 does not Granger–cause 𝑦1𝑡 if and only if the hypothesis

𝐻0 : 𝐴12,𝑖 = 0 for 𝑖 = 1, . . . , 𝑝 (5)

is true. Similarly, 𝑦1𝑡 does not Granger–cause 𝑦2𝑡 if and only if the hypothesis

𝐻0 : 𝐴21,𝑖 = 0 for 𝑖 = 1, . . . , 𝑝 (6)

is true. In each case, a rejection of the null hypothesis implies there is Granger–causality. A
Wald test is a standard choice for testing the above hypotheses since a set of liner restrictions
should be tested simultaneously. Under the null hypothesis, the Wald test statistic follows a usual
asymptotic 𝜒2 distribution with 𝑝 degrees of freedom.

3.4 Diagnostic Tests

Once a VAR is estimated, it is of central interest to test whether the residuals obey the model
assumptions with a set of diagnostic tests. That is, one should check for the absence of
autocorrelation and heteroskedasticity in the model residuals, and see whether the error process is
normally distributed. Therefore, univariate and multivariate versions of formal tests for residual
autocorrelation, conditional heteroskedasticity, and non–normality are conducted. The univariate
diagnostic tests are applied to the residuals of the individual equations whereas the multivariate
versions are used to diagnose the residual vector of VAR.

Ljung–Box (LB) test by Ljung and Box (1978) is a standard tool for checking autocorrelation
of residuals in VAR.20 The null hypothesis of LB test is that all of the residual autocovariances
are zero (i.e., no serial correlation). LB test jointly examines the first ℎ lags of serial correlation
in residual. The choice of the lag length ℎ is crucial for the small sample properties of the test. If
ℎ is chosen too low, then the approximation to the null distribution may be poor whereas a large
ℎ reduces the power of the test. In practice, the choice of ℎ may affect the performance of the
test. However, in the literature, there is little practical advice about how to choose ℎ for LB test;
and thus, using various ℎ values is not uncommon in practice. Therefore, several ℎ values are
employed in all of the LB tests performed in this study. One condition for the multivariate LB test
is that the ℎ value should not be less than the lag length 𝑝 in VAR(𝑝). Therefore the following
ℎ values are selected for all of the LB tests: (1) the lag length 𝑝 in VAR(𝑝); (2) ln(𝑇) which

20The univariate LB test has been generalized to the multivariate case by Hosking (1980, 1981) and Li and
Mcleod (1981).
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provides better power performance as suggested by some simulation studies (Tsay, 2005); (3)
ten since it is indicated by Hyndman and Athanasopoulos (2014) conducting several simulation
tests; (4) the frequency of the time series data; and (5) some other arbitrarily selected values.

For testing heteroskedasticity in the univariate and multivariate cases, the autoregressive
conditional heteroskedasticity Lagrange multiplier (ARCH) test is performed (Engle, 1982;
Hamilton, 1994; Lütkepohl, 2005). The null hypothesis of ARCH test is that there is no ARCH
effect from lag 1 to lag ℎ; and hence, residuals are homoskedastic. Conditional heteroskedasticity
is often a concern for models based on time series data with monthly or higher frequency.
Therefore, to investigate the ARCH effect in the model residuals, same ℎ values used in the LB
tests are employed.

Normality test is often used for model diagnosis although it is not a necessary condition for
the validity of the statistical tests or estimators pertaining to VAR. However, non–normality of
the residuals may indicate other model deficiencies such as non–linearities or structural change
(Lütkepohl, 2011). Therefore, Jarque–Bera (JB) normality test by Jarque and Bera (1987) is
applied to test for normality of the residuals in the univariate and multivariate cases. Moreover,
separate tests for only skewness and only kurtosis is performed for each case.

3.5 Impulse Response Analysis

In VAR, coefficient estimates are rarely the focus of the analysis since their interpretation is
often hard due to the multidimensional system. Therefore, following Sims (1980)’s seminal
paper, it is often of interest to analyze the dynamic relationships among the variables via impulse
response analysis. It explains how an external one–time shock affects the dynamic path of a set
of variables in a system. These dynamic paths are defined by impulse response functions (IRFs).
More specifically, IRF measures the response of a variable as a function of time to an impulse in
another variable, holding all else constant.

Impulse response analysis is often performed in terms of the moving average (MA) represen-
tation. For instance, the MA representation of the 𝑘-dimensional stable VAR(𝑝) presented in
Eq. 1 is given as

yt = c +
∞∑︁
𝑖=0

𝛷𝑖𝜀t−i (7)

where𝛷0 = 𝐼𝑘 ; and𝛷𝑖’s are 𝑘 × 𝑘 matrices which contain the impulse responses. The𝛷𝑠 matrices
can be computed recursively as

𝛷𝑠 =

𝑠∑︁
𝑗=1

𝛷𝑠− 𝑗 𝐴 𝑗 for 𝑠 = 1, 2, . . . (8)

where 𝐴 𝑗 = 0 for 𝑗 > 𝑝; and 𝑠 indicates the time ahead from the impulse21. The (𝑖, 𝑗)th

21In VAR, an impulse in a variable is induced through the residual vector 𝜀t = (𝜀1𝑡 , . . . , 𝜀𝑘𝑡 )′. For instance, a
non–zero element of 𝜀t yields an equal change in the associated left–hand side variable. Then, it induces further
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coefficients of the matrix𝛷𝑠 is interpreted as the expected response of variable 𝑦𝑖,𝑡+𝑠 to a unit
shock in variable 𝑦 𝑗 𝑡 . Thus, the matrix 𝛷𝑖 𝑗 ,𝑠 =

𝜕𝑦𝑖,𝑡+𝑠
𝜕𝜀 𝑗𝑡

as a function of 𝑠 is called the impulse
response function. An important note is that if VAR is stable, then the IRFs should converge
to zero as the time from the impulse 𝑠 gets large, that is, the effect of an impulse is transitory.
However, the impact of a one–time shock in VECM may lead to permanent changes in some or
all of the variables, that is, it shifts the system to a new equilibrium (Lütkepohl and Reimers,
1992; Lütkepohl, 2005).

In order to evaluate the dynamic relationships among the variables of a model, the Generalized
IRFs22 are used with a 90% confidence interval generated with 10000 bootstrap replications.
Specifically, IRFs are applied to the estimates of the VAR to compute responses over time in
all variables to a one-unit positive shock in one of the variables. An important point is that all
variables are employed in the rate of return form in the estimation of the VAR. Hence, a one-unit
positive shock can be seen as a one-percentage-point positive shock. The responses should be
interpreted similarly. Therefore, all IRFs are interpreted in percentage-points.23

4 Structural Break Tests

A structural break occurs when there is an abrupt change in a time series, a regression or even
a system of equations in a point of time. It can involve a change in mean and a change in the
other parameters of the process of interest which in turn reduces the reliability of the empirical
analyses.

Issues related to structural breaks in regressions have been extensively studied in the
econometrics literature.24 Various methods for identifying structural breaks in a single regression
model have been well documented in Bai and Perron (1998, 2003a,b, 2004) and Perron and Qu
(2006). However, only a few studies such as Bai et al. (1998, 2000) and Qu and Perron (2007)
have dealt with structural breaks in a system of equations. The method used in these studies
relies on the assumption of common breaks25 under which breaks in different parameters26 occur
at the same date. Bai et al. (1998) provide the details of a method that assumes a single break in
a multivariate system with stationary regressors. On the other hand, Bai et al. (2000) develop a
method of detecting multiple structural breaks in vector autoregressive models with stationary
variables.
changes in the other variables of the system in the next periods.

22See, Koop et al. (1996) for the details of Generalized IRFs and its advantages over the Tradiional and
Orthogonolized IRFs.

23Note that while interpreting IRFs, all the reported responses are positive and statistically significant unless
stated otherwise.

24See, Perron (2006) for a comprehensive literature review.
25A common break refers to a break that occurs in all equations at the same date. Throughout this study, breaks

are assumed to occur in all equations; and hence; the term common is omitted.
26These parameters are the regression parameters and the covariance parameters (i.e., the parameters of the

covariance matrix of the errors).
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Qu and Perron (2007) develop a novel approach for detecting multiple structural breaks
occurring at unknown dates in linear multivariate regression models with stationary variables.
The Qu and Perron (2007) methodology allows structural breaks to occur in three scenarios:
(1) breaks occurring only in the regression parameters; (2) breaks occurring only in the
covariance parameters; and (3) breaks occurring in both the regression and covariance parameters
simultaneously. One advantage of the Qu and Perron (2007) methodology is that the dates and
the number of breaks are endogenously estimated rather than being imposed ex–ante like some
of the methods used in the time series literature. Moreover, it allows the distribution of regressors
to differ across regimes and the error process to be autocorrelated as well as conditionally
heteroskedastic.

The Qu and Perron (2007) methodology can be applied to various models since it permits
incorporating arbitrary valid restrictions on the model parameters. For instance, it can be applied
to any VAR with multiple structural breaks where a subset of the parameters does not change
across regimes. In essence, the Qu and Perron (2007) methodology is more flexible than those
found in the previous studies. The following subsections present a brief description of the Qu
and Perron (2007) methodology and how it is applied in this study.

4.1 Model Setup and Estimation

In order to test for multiple structural breaks in VAR with the Qu and Perron (2007) methodology,
consider the 𝑘-dimensional VAR(1) presented in Eq. 9. It can be extended to a general VAR(𝑝)
without any major difficulties.

yt = c + 𝐴1yt−1 + 𝜀t (9)

Assume that the dates and the total number of breaks in parameters are unknown in the system.
As a matter of notation, let 𝑚 denote the total number of structural breaks, 𝑇 denote the sample
size, and 𝑘 denote the number of equations. A subscript 𝑗 indexes a regime 𝑗 = (1, . . . , 𝑚 + 1), a
subscript 𝑡 indexes a temporal observation 𝑡 = (1, . . . , 𝑇), and a subscript 𝑖 indexes the equation
𝑖 = (1, . . . , 𝑘) to which a scalar dependent variable 𝑦𝑖𝑡 is associated. The break dates are denoted
by the vector T = (𝑇1, . . . , 𝑇𝑚), where 𝑇0 = 1 and 𝑇𝑚+1 = 𝑇 . Hence, there are 𝑚 + 1 unknown
regimes with 𝑇𝑗−1 + 1 ≤ 𝑡 ≤ 𝑇𝑗 for 𝑗 = (1, . . . , 𝑚 + 1). The parameter 𝑞 denotes the number of
regressors and zt = (𝑧1𝑡 , . . . , 𝑧𝑞𝑡)′ is the set of regressors from all equations.27 Consequently, the
model in Eq. 9 can be written in a concise form as

yt = (𝐼𝑘 ⊗ z′t)𝑆𝛽j + 𝜀t (10)

27For any VAR, zt contains the deterministic terms and the lagged variables. For instance, it becomes
zt = (1, 𝑦1𝑡−1, . . . , 𝑦𝑘𝑡−1)′ for the 𝑘-dimensional VAR(1) presented in Eq. 9.
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where 𝐼𝑘 is a 𝑘 × 𝑘 identity matrix; 𝛽j is a 𝑝 × 1 vector of regression parameters28 in regime
𝑗 , where 𝑝 is the total number of regression parameters used in the system; and 𝜀t is the error
terms with zero mean and covariance matrix Σ 𝑗 , which defines the covariance matrix in regime
𝑗 . The matrix 𝑆 is of dimension 𝑘𝑞 × 𝑝 with full column rank. It is used to specify which
regressors appear in each equation by involving elements that are zero or one. Hence, it is called
selection matrix.29 The Qu and Perron (2007) methodology also allows the imposition of a set of
𝑟 parameter restrictions in the form of

𝑔(𝛽, 𝑣𝑒𝑐(Σ)) = 0 (11)

where 𝛽 = (𝛽′1, . . . , 𝛽
′
𝑚+1)

′; Σ = (Σ1, . . . , Σ𝑚+1); and 𝑔(·) is an 𝑟–dimensional vector.
The ultimate aim of the Qu and Perron (2007) methodology is to estimate Ψ = {𝑚, T̂ , 𝛽, Σ̂}.

For now, suppose that 𝑚 is known. The estimation of 𝑚 will be discussed in the next subsection.
For the estimation of Eq. 10, it is convenient to rewrite the model as

yt = x′t𝛽j + 𝜀t (12)

where x′t = (𝐼𝑘 ⊗ z′t)𝑆. To estimate Eq. 12, the Qu and Perron (2007) methodology employs
restricted quasi–maximum likelihood assuming serially uncorrelated and normally distributed
errors. Then, conditional on the given break dates T = (𝑇1, . . . , 𝑇𝑚), the quasi–likelihood
function is defined as

𝐿𝑇 (T , 𝛽, Σ) =
𝑚+1∏
𝑗=1

𝑇 𝑗∏
𝑡=𝑇 𝑗−1+1

𝑓
(
𝑦𝑡 |𝑥𝑡 ; 𝛽 𝑗 , Σ 𝑗

)
(13)

where
𝑓 (𝑦𝑡 |𝑥𝑡 ; 𝛽 𝑗 , Σ 𝑗 ) =

1
(2𝜋)𝑘/2 |Σ 𝑗 |1/2

exp
{
−1

2
[
𝑦𝑡 − 𝑥′𝑡𝛽 𝑗

]′
Σ−1
𝑗

[
𝑦𝑡 − 𝑥′𝑡𝛽 𝑗

]}
(14)

and the quasi–likelihood ratio is

𝐿𝑅𝑇 =

𝑚+1∏
𝑗=1

𝑇 𝑗∏
𝑡=𝑇 𝑗−1+1

𝑓
(
𝑦𝑡 |𝑥𝑡 ; 𝛽 𝑗 , Σ 𝑗

)
𝑚+1∏
𝑗=1

𝑇0
𝑗∏

𝑡=𝑇0
𝑗−1+1

𝑓

(
𝑦𝑡 |𝑥𝑡 ; 𝛽0

𝑗 , Σ
0
𝑗

) (15)

where T 0 = (𝑇0
1 , . . . , 𝑇

0
𝑚), 𝛽0

𝑗
, and Σ0

𝑗
indicate the true unknown parameters. Then, the aim

28It becomes 𝛽j = (𝑐1 𝑗 , 𝐴11, 𝑗 , 𝐴12, 𝑗 , . . . , 𝐴1𝑘, 𝑗 , . . . , 𝑐𝑘 𝑗 , 𝐴𝑘1, 𝑗 , 𝐴𝑘2, 𝑗 , . . . , 𝐴𝑘𝑘, 𝑗 )′ for the 𝑘-dimensional
VAR(1) presented in Eq. 9

29For any VAR, the matrix 𝑆 becomes a 𝑝 × 𝑝 identity matrix 𝐼𝑝 since VAR uses all of the regressors in each
equation by construction (i.e., 𝑘𝑞 = 𝑝).
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is to estimate the values of (𝑇1, . . . , 𝑇𝑚, 𝛽, Σ) that maximizes 𝐿𝑅𝑇 subject to restrictions
𝑔(𝛽, 𝑣𝑒𝑐(Σ)) = 0. Let 𝑙𝑟𝑇 (·) denote the log–likelihood ratio and 𝑟𝑙𝑟𝑇 (·) denote the restricted
log–likelihood ratio. Then, the objective function is defined as

𝑟𝑙𝑟𝑇 (T , 𝛽, Σ) = 𝑙𝑟𝑇 (T , 𝛽, Σ) + 𝜆′𝑔(𝛽, 𝑣𝑒𝑐(Σ)) (16)

and the estimates are (
T̂ , 𝛽, Σ̂

)
= argmax

(𝑇1,...,𝑇𝑚;𝛽;Σ)
𝑟𝑙𝑟𝑇 (T , 𝛽, Σ) (17)

The maximization of Eq. 17 is taken over all partitions T = (𝑇1, . . . , 𝑇𝑚) = ( [𝑇𝜆1], . . . , [𝑇𝜆𝑚])
in the set

𝛬𝜖 =
{
(𝜆1, . . . , 𝜆𝑚); |𝜆 𝑗+1 − 𝜆 𝑗 | ≥ 𝜖, 𝜆1 ≥ 𝜖, 𝜆𝑚 ≤ 1 − 𝜖

}
(18)

where 𝜖 is an arbitrarily small positive number between zero and one; and [ ] denotes the integer
part of the argument. The parameter 𝜖 is a trimming fraction that imposes a minimal length for
each regime. Thus, it is called trimming parameter. An important result of the Qu and Perron
(2007) methodology is that the estimates of the break dates T = (𝑇1, . . . , 𝑇𝑚) are not affected by
the restrictions imposed on the parameters 𝛽 and Σ. Instead, the estimates of the break dates are
only affected by the underlying structure of the system.

4.2 Selection of the Total Number of Breaks

In order to estimate the total number of breaks 𝑚, Qu and Perron (2007) use a likelihood
ratio test of no structural breaks against 𝑚 structural breaks. For the given partitions T =

(𝑇1, . . . , 𝑇𝑚) = ( [𝑇𝜆1], . . . , [𝑇𝜆𝑚]), the model can be estimated by quasi–maximum likelihood
with the parameter restrictions. Thus, the test is the maximum value of the likelihood ratio over
all admissible partitions in the set 𝛬𝜖 defined in Eq. 18. Then, the test can be constructed as

sup 𝐿𝑅𝑇 (𝑚, 𝑝𝑏, 𝑛𝑏𝑑 , 𝑛𝑏𝑜, 𝜖) = sup
(𝜆1,...𝜆𝑚)∈𝛬𝜖

2
[
log �̂�𝑇

(
𝑇1, . . . , 𝑇𝑚

)
− log �̃�𝑇

]
(19)

= 2
[
log �̂�𝑇

(
𝑇1, . . . , 𝑇𝑚

)
− log �̃�𝑇

]
where log �̂�𝑇 (𝑇1, . . . , 𝑇𝑚) is the maximum of the log–likelihood obtained by considering only
those partitions in 𝛬𝜖 ; log �̃�𝑇 is the maximum of the log–likelihood under the null hypothesis of
no structural breaks; 𝑝𝑏 is the total number of regression parameters that are allowed to change;
and 𝑛𝑏𝑑 and 𝑛𝑏𝑜 respectively indicate the total number of diagonal and off–diagonal parameters
of the covariance matrix of the errors that are allowed to change. As noted before, the Qu and
Perron (2007) methodology is particularly flexible in testing many cases of structural breaks. For
instance, using the sup 𝐿𝑅𝑇 (𝑚, 𝑝𝑏, 𝑛𝑏𝑑 , 𝑛𝑏𝑜, 𝜖) test, it is possible to test: (1) breaks only in the
regression parameters (i.e., 𝑛𝑏𝑑 = 0 and 𝑛𝑏𝑜 = 0); (2) breaks only in the covariance parameters
(i.e., 𝑝𝑏 = 0); and (3) breaks in both the regression and covariance parameters simultaneously
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(i.e., 𝑝𝑏 ≠ 0, 𝑛𝑏𝑑 ≠ 0, and 𝑛𝑏𝑜 ≠ 0), which is called complete pure structural break.
In empirical applications, it is often the case that the total number of breaks in the system is

unknown. Therefore, it needs to be determined by a statistical procedure. In this regard, Qu and
Perron (2007) consider a sequential testing procedure based on the null hypothesis of ℓ breaks
versus the alternative hypothesis of (ℓ + 1) breaks. The procedure performs a one break test
for each of the (ℓ + 1) segments defined by the partition (𝑇1, . . . , 𝑇ℓ) and assesses whether the
maximum of the tests is significant. More precisely, the test is defined as

𝑆𝐸𝑄𝑇 (ℓ + 1 | ℓ) = max
1≤ 𝑗≤ℓ+1

sup
𝜏∈𝛬 𝑗 , 𝜖

𝑙𝑟𝑇

(
𝑇1, . . . , 𝑇𝑗−1, 𝜏, 𝑇𝑗 , . . . , 𝑇ℓ

)
− 𝑙𝑟𝑇

(
𝑇1, . . . , 𝑇ℓ

)
(20)

where 𝑙𝑟𝑇 (·) denotes the log–likelihood ratio; (𝑇1, . . . , 𝑇ℓ) denotes the optimal partition if ℓ
breaks are assumed; and 𝛬 𝑗 ,𝜖 = {𝜏;𝑇𝑗−1 + (𝑇𝑗 − 𝑇𝑗−1)𝜖 ≤ 𝜏 ≤ 𝑇𝑗−1 − (𝑇𝑗 − 𝑇𝑗−1)𝜖}.

Qu and Perron (2007) also consider a set of tests based on the null hypothesis of no breaks
against the alternative hypothesis of an unknown number of breaks given some upper–bound 𝑀

for 𝑚. These tests are called double maximum tests since they are based on the maximum of the
weighted individual tests for the null hypothesis of no breaks against 𝑚 = (1, . . . , 𝑀) breaks.
The general form of the double maximum test is given as

𝐷 max 𝐿𝑅𝑇 (𝑀) = max
1≤𝑚≤𝑀

𝛼𝑚 sup 𝐿𝑅𝑇 (𝑚, 𝑝𝑏, 𝑛𝑏𝑑 , 𝑛𝑏𝑜, 𝜖) (21)

where 𝛼𝑚 denotes the weight for 𝑚 = (1, . . . , 𝑀). For equal weights (i.e., 𝛼𝑚 = 1), the test is
denoted by 𝑈𝐷 max 𝐿𝑅𝑇 (𝑀). Whereas, the test is denoted by 𝑊𝐷 max 𝐿𝑅𝑇 (𝑀) if it applies
weights to the individual tests such that the marginal p–values are equal across values of 𝑚. A
detailed discussion of these tests can be found in Bai and Perron (1998, 2003b).

In practice, Qu and Perron (2007) suggest using the following strategy to determine the
number of structural breaks. First, perform one of the double maximum tests to see if at least one
break is present. If the test rejects, then the number of breaks can be decided based on testing
𝑆𝐸𝑄𝑇 (ℓ + 1 | ℓ) sequentially until there is no rejection of the null hypothesis.30 According to
Bai and Perron (1998, 2003b), this method leads to the best results and is recommended for
empirical applications.31

5 Estimation and Results

Using the entire data and assuming no structural breaks, each series is initially tested for
seasonal unit root. None of the series are found to have a seasonal unit root in the Os-
born–Chui–Smith–Birchenhall and Canova–Hansen tests. Thus, there is no need for seasonal

30In sequential testing, ignore the 𝑆𝐸𝑄𝑇 (1 | 0) test and select𝑚 such that the 𝑆𝐸𝑄𝑇 (ℓ+1 | ℓ) tests are insignificant
for 𝑚 ≤ ℓ).

31GAUSS code for the Qu and Perron (2007) methodology and some other explanatory documentation can be
found in URL: https://tinyurl.com/y54yfsrx.
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differencing in any of the series.
The EAP is first used to reveal whether each series is a TSP or a DSP. These results are

omitted since none of the series with any lag lengths are found to be a TSP at the 5% significance
level. Thus, all series are concluded to be either a stationary process or a DSP. Table 3 presents
the ADF unit root test results with EAP for each series. Each series shows evidence for being a
stationary process at the 5% significance level. The PP unit root test results for each series are
presented in Table 4. The results suggest that each series is stationary since the null hypothesis
can be rejected at any conventional significance levels. Table 5 presents the ERS unit root test
results for each series, which are similar to the PP unit root test results. The KPSS stationary
test results for each series are presented in Table 6. The results indicate that all of the series
exhibit a unit root process when only a constant is added to the model. However, they seem to
be stationary when there is a trend in the model. In overall, considering all of the unit root and
stationary tests, it is decided that each series is a stationary process.

After each series is confirmed to be a stationary process, a 3-dimensional VAR is constructed
with one lag (i.e., VAR(1)). Then, two structural breaks are endogenously estimated for the
VAR(1) using the Qu and Perron (2007) methodology presented in Section 4. The Qu and
Perron (2007) methodology is performed under the following conditions: (1) the maximum
number of breaks is fixed to 𝑚 = 2 in order to target the extreme events occurred in the history
of cryptocurrencies; (2) all of the regression and covariance parameters are allowed to change
across regimes; and (3) the trimming parameter is fixed to 𝜖 = 0.25 to prevent possible size
distortions of structural break tests (Bai and Perron, 2003b).

The Qu and Perron (2007) methodology is applied to the VAR(1) in two steps. In the first
step, various tests are conducted to provide statistical evidence for two structural breaks. First,
𝑊𝐷 max 𝐿𝑅𝑇 (𝑀) test is performed to test the null hypothesis of no breaks against the alternative
hypothesis of up to two breaks.32 The test result suggests that there is at least one structural break
since the null hypothesis is rejected at the 1% significance level. Second, the 𝑆𝐸𝑄𝑇 (ℓ + 1 | ℓ) test
presented in Eq. 20 is applied. It is a sequential testing procedure based on the null hypothesis of
𝑙 breaks versus the alternative hypothesis of (𝑙 + 1) breaks. The 𝑆𝐸𝑄𝑇 (2 | 1) test result indicates
that there are two structural breaks since the null hypothesis of one break is rejected at the 1%
significance level.33 In the second step, the two structural break dates are endogenously estimated
using the sup 𝐿𝑅𝑇 (𝑚, 𝑝𝑏, 𝑛𝑏𝑑 , 𝑛𝑏𝑜, 𝜖) test presented in Eq. 19. According to test results, the
estimated structural break dates are 11-12-2015 and 09-28-2016. Both break dates are statistically
significant at the 1% significance level.

As a result, 11-12-2015 (i.e., the 590th observation) and 09-28-2016 (i.e., the 911th observa-
tion) are selected as the two structural break dates for the 3–dimensional VAR(1). The first break
date might be linked to two distinct events. On September 17, 2015, the U.S. Commodity Futures
Trading Commission (CFTC) filed charges against a cryptocurrency exchange for allowing

32The 𝑊𝐷 max 𝐿𝑅𝑇 (𝑀) test is one of the double maximum tests whose general form is presented in Eq. 21.
33In sequential testing, the 𝑆𝐸𝑄𝑇 (1 | 0) test is ignored as suggested by Bai and Perron (1998, 2003b).
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trade of option contracts.34 Thus, the CFTC for the first time declared that cryptocurrencies are
properly defined as commodities. On October 22, 2015, the European Court of Justice ruled that
the exchange of cryptocurrencies is not subject to value–added–tax in the European Union.35
Hence, the ruling classified cryptocurrencies as currency, instead of goods or property. On the
other hand, it seems that the second structural break occurred just seventy–nine days after the
2nd halving of the Bitcoin blockchain. Considering the fact that miners gradually adjust their
cost/revenue analysis to the new reward per block after the halving, the date 09-28-2016 is a
close estimation for the 2nd halving of the Bitcoin blockchain occurred in 07-09-2016.

In summary, the results of the structural break tests suggest that the three rival cryptocurrencies
(i.e., Bitcoin, Litecoin, and Ripple) as a system have experienced two critical structural breaks
in the fourth quarter of 2015 and 2016. Therefore, it can be said that price dynamics of these
cryptocurrencies have been significantly changed, and the 3–dimensional VAR(1) performed on
the entire data might not be adequate to capture the true price dynamics. To capture the price
dynamics before and after the structural breaks and to compare them, the data are separated into
three segments on the break dates. While splitting the data into three segments, no transition
period is considered.

5.1 Segment 1

This section presents the empirical results for the 1st segment.
Each series is tested for seasonal unit root with the two tests mentioned before, and none of

the series are found to have a seasonal unit root in any of the tests. The results of the unit root
and stationary tests are omitted since they are similar to the results presented for the entire data
(see, Table 3 through Table 6). Therefore, it is concluded that each series in the 1st segment is
stationary.

After each series is confirmed to be a stationary process, a 3-dimensional VAR is estimated
with one lag. The VAR(1) results along with some model statistics are presented in Table 10. A
series of multivariate and univariate diagnostic tests for the model residuals are presented in
Table 11. According to the results, there appears to be a statistically significant serial correlation,
conditional heteroskedasticity, and non–normality in the multivariate case. In overall, the results
of the univariate case is similar. However, if one lag is used, it seems that XRP equation has
homoskedastic residuals and there is no serial correlation in any of the equations. In general, these
results indicate that the lag length specified for the VAR(1) should be increased. Therefore, the
same model is estimated with various higher lag lengths. However, results of the model diagnostic
tests do not improve. Therefore, rest of the analyses are conducted on the above–presented model.

Granger–causality tests are performed to reveal causalities between the variables of VAR(1).
The results in Table 12 show that there is a unidirectional Granger–causality between BTC-XRP.

34See URL: https://tinyurl.com/yxjsval3.
35See URL: https://goo.gl/frSf8y.
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In essence, these are the only variables that exhibit a Granger–causality in the system.
Finally, impulse response analysis is performed for the 1st segment. Figure 3 illustrates the

responses of all variables to a one-percentage-point positive shock in each variable individually.
What stands out in these results is that all impulses yield an immediate positive impact, and they
die out rapidly and reach zero (i.e., the effect of an impulse is transitory) as expected due to the
stable system. The results suggest that a one-percentage-point positive shock in BTC yields a
statistically significant but gradually decreasing impact on itself, and it dies out after four days.
The same impulse causes an immediate 1.05 percentage-point increase in LTC, which gradually
decreases toward zero and becomes statistically insignificant after two days. The same shock
leads to an immediate 0.35 percentage-point increase in XRP; however, it dies out rapidly and
becomes statistically insignificant before the end of the first day. A one-percentage-point positive
shock in LTC generates a statistically significant but gradually decreasing effect in itself until
the fourth day. The same shock leads to an immediate 0.35 percentage-point increase in BTC,
which stays statistically significant until the fourth day and then dies out. The same impulse
generates an immediate 0.2 percentage-point increase in XRP but rapidly dies out and becomes
insignificant just after the first day. A similar shock in XRP leads to immediate 0.12 and 0.22
percentage-point increases in BTC and LTC respectively; however, these impacts die out and
become statistically insignificant just after the first day. The response of XRP to own impulse
gradually decreases and lasts six days before becoming statistically insignificant.

5.2 Segment 2

This section presents the empirical results for the 2nd segment.
All of the series are tested for seasonal unit root, and it is found that none of the series

exhibits a seasonal unit root process in any of the two tests mentioned before. Then, the unit root
and stationary tests are applied to each series, but the results are omitted since they are similar to
the results presented for the entire data (see, Table 3 through Table 6). Hence, it is decided that
all of the series in the 2nd segment exhibit a stationary process.

A 3-dimensional VAR is estimated with one lag since all of the series are stationary.
Table 13 provides the VAR(1) results along with some model statistics. The multivariate and
univariate diagnostic tests for the model residuals are given in Table 14. The results suggest
a statistically significant serial correlation, conditional heteroskedasticity, and non–normality
in the multivariate case. In the univariate case, the serial correlation problem is disappeared;
however, the other problems still persist. In general, it seems that the problems with the model
residuals are mitigated a little bit compared to the 1st segment.

To investigate causalities between the variables, Granger–causality tests are performed.
However, the results presented in Table 15 suggest no Granger–causality in the system.

Finally, impulse response analysis is performed for the 2nd segment. Figure 4 displays the
responses of all variables to a one-percentage-point positive shock in each variable individually.
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In overall, the results show that the responses die out quickly and reach zero as in the 1st segment.
The results indicate that a one-percentage-point positive shock in BTC causes a statistically
significant but gradually decreasing response in itself; however, it dies out after four days.
The same shock leads to an immediate 0.9 percentage-point increase in LTC, but it gradually
decreases to zero and becomes statistically insignificant after two days. The response of XRP
to the same impulse in BTC is statistically insignificant throughout the days considered. A
one-percentage-point positive shock in LTC leads to a statistically significant but gradually
decreasing impact on itself until the fourth day. The same shock immediately increases BTC by
0.75 percentage-point, which stays statistically significant until the fourth day and dies out. The
response of XRP to the same shock is statistically insignificant for the days considered. A similar
shock in XRP generates statistically significant responses only in itself, which dies out in just
one day.

5.3 Segment 3

This section presents the empirical results for the 3rd segment.
Each series is tested for seasonal unit root, and none of the series are found to have a seasonal

unit root. Once again, the results of the unit root and stationary tests are omitted due to the
similarity to the results presented for the entire data (see, Table 3 through Table 6). Thus, it is
concluded that each series in the 3rd segment exhibits a stationary process.

After all of the series are confirmed to exhibit a stationary process, a 3-dimensional VAR is
estimated with one lag. Table 13 presents the VAR(1) results along with some model statistics.
Table 17 shows the multivariate and univariate diagnostic tests for the model residuals. It appears
that the problems with the model residuals still continue as in the first two segments. The results
of the multivariate case suggest that the model residuals are serially correlated, conditionally
heteroskedastic, and non–normal. However, for the univariate case, the residuals are serially
uncorrelated and homoskedastic in LTC equation only.

The Granger–causality test results are presented Table 15. The results indicate that there are
unidirectional Granger–causalities between BTC-XRP and LT-XRP only.

Finally, impulse response analysis is performed for the 3rd segment. Figure 5 presents the
responses of all variables to a one-percentage-point positive shock in each variable individually.
Once again, the results show that the responses only last for couple days and reach zero as in
the first two segments. A one-percentage-point positive shock in BTC generates a statistically
significant but gradually decreasing response in itself, which lasts for four days then reaches
zero. The same impulse immediately increases LTC by 0.81 percentage-point; however, it rapidly
decreases and become statistically insignificant just after one day. The response of XRP to the
same impulse leads to an immediate 0.38 percentage-point increase, but it almost instantly
becomes insignificant at the beginning of the first day. A one-percentage-point positive shock
in LTC results in a statistically significant but gradually decreasing effect in itself for three
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days. The same shock immediately increases BTC and XRP by 0.25 and 0.41 percentage-point
respectively, but they die out after three days and become insignificant. A similar shock in
XRP leads to immediate 0.05 and 0.15 percentage-point increases in BTC and LTC respectively,
but the impacts die out and become statistically insignificant after couple days. The response
of XRP to own impulse gradually decreases and lasts three days before becoming statistically
insignificant.

6 Discussion

A comparison of each segment provides useful insights, especially in understanding how the
price dynamics between the rival cryptocurrencies change over time and are affected by structural
shocks. The comparison is performed in two steps using the results of Granger–causality test
and impulse response analysis.

In the first step, the Granger–causality test results presented in Table 12, Table 15, and
Table 18 are compared to investigate the changes in causalities between rival cryptocurrencies
across segments. The comparison shows that there is a unidirectional Granger–causality between
BTC-XRP in the 1st and 3rd segments; however, it disappears in the 2nd segment. Moreover, a
unidirectional Granger–causality between LTC-XRP appears only in the 3rd segment. In essence,
considering the following factor might explain why BTC and LTC Granger–causes XRP in the 3rd

segment. Bitcoin and Litecoin are often considered as the gold and silver of the cryptocurrency
world due to their reliable and long history. Therefore, a price movement in these coins is
interpreted as a general price change in the whole cryptocurrency market by investors. As a
result, the Granger–causality test results imply that the structure of the price dynamics between
the rival cryptocurrencies has changed after the structural breaks.

In order to thoroughly understand how the price dynamics have changed across segments,
the impulse responses of each segment are compared impulse by impulse.

First, comparing Figure 3a, Figure 4a, and Figure 5a suggests that the response of XRP to
a shock in BTC is not statistically significant only in the 2nd segment. An interesting result is
that the responses of BTC and LTC to a shock in BTC are overall the same across segments.
These results, in essence, confirm the Granger–causality tests. As a result, it is concluded that in
response to a shock in Bitcoin price, the change in each coin is overall the same across segments.

Second, comparing Figure 3b, Figure 4b, and Figure 5b indicates that a one-percentage-point
positive shock in LTC yields a 0.75 percentage-point increase in BTC in the 2nd segment, which
is three times higher than the 3rd segment. Moreover, the same shock increases XRP by 0.2 and
0.41 percentage-point in the 1st and 3rd segments respectively. However, the response is not
statistically significant in the 2nd segment. In overall, these results suggest that in response to a
shock in Litecoin price, the impact on Bitcoin price is decreasing over time; however, the impact
on Ripple price is increasing.

Third, when Figure 3c, Figure 4c, and Figure 5c are compared, it can be seen that the response
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of each variable to a shock in XRP are statistically insignificant in the 2nd segment. Moreover,
the response of BTC and LTC to the same shock are decreasing from the 1st segment to the 2nd

segment. As a result, it can be said that, in overall, in response to a shock in Ripple price, the
impact on the prices of Bitcoin and Litecoin are decreasing over time.

7 Conclusion

The present research provides empirical evidence on the structural change of the price dynamics
between three rival cryptocurrencies (i.e., Bitcoin, Litecoin, and Ripple) over the period of April
2014-July 2017. For this purpose, first, the Qu and Perron (2007) methodology is performed to
determine two structural breaks in a VAR framework. The choice of this methodology is led by
its decisive advantages compared to the alternative techniques used in the literature. Specifically,
the methodology endogenously estimates multiple structural breaks in regression and covariance
parameters at an unknown date. It also allows the distribution of regressors to differ across
regimes and the error process to be autocorrelated as well as conditionally heteroskedastic.
Second, the estimated breakpoints are used to split the data into three segments. Finally, to
investigate the dynamic price linkages across segments, Granger–causality tests and impulse
response analysis are applied to each segment.

In overall, five conclusions can be drawn from the results. First, using the daily price data for
cryptocurrencies, this study finds that there are two robust structural breaks (i.e., 11-12-2015 and
09-28-2016) that appear to have affected the price dynamics between the rival cryptocurrencies.
The first break date is linked to two distinct events that declared a cryptocurrency not only as a
commodity but also as currency. The second break is linked to the 2nd halving of the Bitcoin
blockchain. Second, after the second structural break, the Granger–causality from the prices of
other coins to Ripple price have gained strength. Third, the response of each coin to a shock
in Bitcoin price is same across segments. Fourth, in response to a shock in Litecoin price, the
impact on Bitcoin price is decreasing over time; however, the impact on Ripple price is increasing.
Fifth, the impact on the prices of Bitcoin and Litecoin are decreasing over time in response to a
shock in Ripple price.
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Table 1: Data Description Summary

Variable Description Source # of Obs.

Bitcoin Price Bitcoin Price from BraveNewCoin (2017), nominal daily observations of the volume weighted average
price in USD. The designated symbol for the rate of return form is BTC unless otherwise noted.

Quandl (2017) 1215

Litecoin Price Litecoin Price from BraveNewCoin (2017), nominal daily observations of the volume weighted
average price in USD. The designated symbol for the rate of return form is LTC unless otherwise noted.

Quandl (2017) 1215

Ripple Price Ripple Price from BraveNewCoin (2017), nominal daily observations of the volume weighted average
price in USD. The designated symbol for the rate of return form is XRP unless otherwise noted.

Quandl (2017) 1215

Notes: Downloaded on July 30, 2017 from Quandl (2017). The Designated symbols refer to a coin itself in the text and the transformed variable in the analyses.

Table 2: Summary Statistics - Entire Data

Variable # of Obs. Min. Max. Median Mean Std. Dev. Skewness Kurtosis

Bitcoin Price 1215 192.66 2924.81 449.81 642.50 558.17 2.47 5.85
Rate of Return Bitcoin Price 1214 −18.56 17.23 0.15 0.19 2.92 −0.32 5.75
Litecoin Price 1215 1.27 53.09 3.83 6.71 8.92 3.32 10.86
Rate of Return Litecoin Price 1214 −35.14 46.68 −0.01 0.20 4.80 1.47 17.23
Ripple Price 1215 0.00 0.38 0.01 0.03 0.06 3.65 12.27
Rate of Return Ripple Price 1214 −37.54 101.56 −0.19 0.44 6.66 4.45 55.75
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(a) Bitcoin Price
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(b) Litecoin Price
Figure 1: Plots of All Variables
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(c) Ripple Price
Figure 1 (continued)
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Figure 2: Plot of All Variables Together
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Table 3: ADF Unit Root Test Results with EAP - Entire Data

Variable:
Lag BTC LTC XRP

AIC Stationary Stationary Stationary
BIC Stationary Stationary Stationary
NPS Stationary Stationary Stationary
Notes: All decisions are given at the 5% significance
level.

Table 4: PP Unit Root Test Statistics - Entire Data

Variable:
Model Lag BTC LTC XRP

Constant

AIC −27.39∗∗∗ −27.92∗∗∗ −28.38∗∗∗
BIC −27.68∗∗∗ −28.12∗∗∗ −27.85∗∗∗
Long −27.16∗∗∗ −28.06∗∗∗ −29.69∗∗∗
Short −27.23∗∗∗ −27.92∗∗∗ −28.28∗∗∗

Trend

AIC −27.52∗∗∗ −28.05∗∗∗ −28.42∗∗∗
BIC −27.80∗∗∗ −28.32∗∗∗ −27.94∗∗∗
Long −27.14∗∗∗ −27.94∗∗∗ −29.56∗∗∗
Short −27.32∗∗∗ −28.05∗∗∗ −28.33∗∗∗

Notes: ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%,
and 1% levels respectively.

Table 5: ERS Unit Root Test Statistics - Entire Data

Variable:
Model Lag BTC LTC XRP

Constant

AIC −6.27∗∗∗ −2.79∗∗∗ −2.17∗∗
BIC −9.27∗∗∗ −8.60∗∗∗ −8.02∗∗∗
Long −0.94 −0.94 −1.28
Short −2.81∗∗∗ −2.79∗∗∗ −2.61∗∗∗

Trend

AIC −11.54∗∗∗ −5.62∗∗∗ −4.22∗∗∗
BIC −16.35∗∗∗ −15.48∗∗∗ −13.89∗∗∗
Long −2.65∗ −2.32 −2.74∗
Short −5.71∗∗∗ −5.62∗∗∗ −5.02∗∗∗

Notes: ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%,
and 1% levels respectively.
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Table 6: KPSS Stationary Test Statistics - Entire Data

Variable:
Model Lag BTC LTC XRP

Constant

AIC 0.70∗∗ 0.87∗∗∗ 0.45∗
BIC 0.71∗∗ 0.99∗∗∗ 0.64∗∗
Long 0.66∗∗ 0.77∗∗∗ 0.33
Short 0.67∗∗ 0.87∗∗∗ 0.45∗

Trend

AIC 0.03 0.08 0.13∗
BIC 0.04 0.09 0.19∗∗
Long 0.04 0.08 0.10
Short 0.03 0.08 0.13∗

Notes: ∗, ∗∗, and ∗∗∗ indicate statistical significance at
the 10%, 5%, and 1% levels respectively.
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Table 7: Summary Statistics - Segment 1

Variable # of Obs. Min. Max. Median Mean Std. Dev. Skewness Kurtosis

Rate of Return Bitcoin Price 589 −18.56 17.23 −0.08 −0.03 3.02 −0.20 6.70
Rate of Return Litecoin Price 589 −35.14 32.11 −0.14 −0.12 5.09 0.42 10.55
Rate of Return Ripple Price 589 −37.54 28.27 −0.21 0.01 5.03 0.17 9.73

Table 8: Summary Statistics - Segment 2

Variable # of Obs. Min. Max. Median Mean Std. Dev. Skewness Kurtosis

Rate of Return Bitcoin Price 321 −9.63 11.40 0.16 0.23 2.31 0.19 5.74
Rate of Return Litecoin Price 321 −18.20 11.90 0.02 0.11 2.50 −0.77 12.91
Rate of Return Ripple Price 321 −25.02 34.90 −0.05 0.33 5.27 1.34 13.38

Table 9: Summary Statistics - Segment 3

Variable # of Obs. Min. Max. Median Mean Std. Dev. Skewness Kurtosis

Rate of Return Bitcoin Price 304 −14.65 11.22 0.47 0.55 3.25 −0.71 3.51
Rate of Return Litecoin Price 304 −20.67 46.68 0.18 0.93 5.89 2.59 16.26
Rate of Return Ripple Price 304 −26.35 101.56 −0.33 1.37 9.88 4.96 40.30
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Table 10: VAR Results - Segment 1

Equation:
BTC LTC XRP

Constant −0.012 −0.084 0.022
BTC𝑡−1 0.176∗∗∗ −0.018 −0.206∗∗
LTC𝑡−1 0.046 0.211∗∗∗ 0.012
XRP𝑡−1 −0.003 0.009 0.317∗∗∗

Observations 588 588 588
Residual Std. Error 2.946 4.991 4.764
R2 0.052 0.043 0.102
Adjusted R2 0.048 0.038 0.098
F Statistic 10.773∗∗∗ 8.672∗∗∗ 22.163∗∗∗

Notes: All the roots are inside the unit circle, and the system is
dynamically stable. ∗, ∗∗, and ∗∗∗ indicate statistical significance at
the 10%, 5%, and 1% levels respectively.
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Table 11: Diagnostic Test Statistics for VAR - Segment 1

Univariate Tests by Equation:
Test Multivariate BTC LTC XRP

LB(1) 2.47∗∗∗ 0.32 0.37 1.24
LB(2) 41.51∗∗∗ 9.93∗∗∗ 17.50∗∗∗ 10.73∗∗∗
LB(3) 54.56∗∗∗ 10.03∗∗ 20.79∗∗∗ 15.77∗∗∗
LB(4) 57.99∗∗∗ 10.05∗∗ 20.84∗∗∗ 15.78∗∗∗
LB(5) 65.71∗∗∗ 10.19∗ 21.28∗∗∗ 15.84∗∗∗
LB(7) 89.01∗∗∗ 12.18∗ 28.26∗∗∗ 23.78∗∗∗
LB(10) 125.59∗∗∗ 22.38∗∗ 36.85∗∗∗ 25.01∗∗∗

ARCH(1) 291.77∗∗∗ 129.53∗∗∗ 75.66∗∗∗ 1.53
ARCH(2) 390.84∗∗∗ 129.22∗∗∗ 79.19∗∗∗ 9.01∗∗
ARCH(3) 453.26∗∗∗ 129.23∗∗∗ 81.79∗∗∗ 10.66∗∗
ARCH(4) 500.36∗∗∗ 131.87∗∗∗ 81.68∗∗∗ 10.82∗∗
ARCH(5) 594.07∗∗∗ 131.64∗∗∗ 99.77∗∗∗ 28.58∗∗∗
ARCH(7) 683.55∗∗∗ 144.55∗∗∗ 100.04∗∗∗ 29.99∗∗∗
ARCH(10) 820.09∗∗∗ 158.89∗∗∗ 102.84∗∗∗ 31.33∗∗∗

JB 16155.35∗∗∗ 768.02∗∗∗ 2264.96∗∗∗ 2750.99∗∗∗
Skewness 23.54∗∗∗ −0.38∗∗∗ 0.35∗∗∗ −0.33∗∗∗
Kurtosis 16131.81∗∗∗ 8.55∗∗∗ 12.59∗∗∗ 13.58∗∗∗

Notes: LB, ARCH, JB, Skewness, and Kurtosis indicate Ljung–Box test for
autocorrelation, ARCH test for autoregressive conditional heteroskedasticity,
Jarque–Bera test for normality, Skewness test for only skewness, and Kurtosis
test for only kurtosis respectively. Values in parenthesis indicate the lag length
used in LB and ARCH tests. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the
10%, 5%, and 1% levels respectively.

Table 12: Granger–Causality Test Statistics - Segment 1

BTC LTC XRP

BTC 0.04 5.79∗∗
LTC 2.23 0.06
XRP 0.01 0.04
Notes: Value in each cell indicates the test statistics
for the hypothesis H0 that is the row variable does
not Granger–cause the column variable. ∗, ∗∗, and ∗∗∗

indicate statistical significance at the 10%, 5%, and
1% levels respectively.
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Notes: All variables are in the rate of return form in the estimation, but the interpretation of IRFs is in percentage point change with a 90% confidence interval generated with 10000 bootstrap replications. 

(a) Response of All Variables to a One-Percentage-Point Positive Shock in Rate of Return Bitcoin Price - Segment 1
Figure 3: Impulse Responses Analysis - Segment 1
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Notes: All variables are in the rate of return form in the estimation, but the interpretation of IRFs is in percentage point change with a 90% confidence interval generated with 10000 bootstrap replications. 

(b) Response of All Variables to a One-Percentage-Point Positive Shock in Rate of Return Litecoin Price - Segment 1
Figure 3 (continued)
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Notes: All variables are in the rate of return form in the estimation, but the interpretation of IRFs is in percentage point change with a 90% confidence interval generated with 10000 bootstrap replications. 

(c) Response of All Variables to a One-Percentage-Point Positive Shock in Rate of Return Ripple Price - Segment 1
Figure 3 (continued)

35

mailto:omer.kara.ylsy@gmail.com


DRAFT

[g
it]

•R
ev

is
io

n:
8e

c0
81

b
•D

at
e:

20
21

-1
0-

21
14

:5
3:

53
+0

30
0

•A
ut

ho
r:

O
m

er
Ka

ra
•E

-m
ai

l:
om

er
.k

ar
a.

yl
sy

@
gm

ai
l.c

om

Table 13: VAR Results - Segment 2

Equation:
BTC LTC XRP

Constant 0.161 0.071 0.260
BTC𝑡−1 0.160 −0.084 0.370
LTC𝑡−1 0.052 0.248∗∗ −0.300
XRP𝑡−1 0.039 0.042 0.027
Observations 320 320 320
Residual Std. Error 2.255 2.445 5.274
R2 0.052 0.043 0.009
Adjusted R2 0.043 0.034 0.000
F Statistic 5.817∗∗∗ 4.713∗∗∗ 0.999
Notes: All the roots are inside the unit circle, and the system
is dynamically stable. ∗, ∗∗, and ∗∗∗ indicate statistical signifi-
cance at the 10%, 5%, and 1% levels respectively.
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Table 14: Diagnostic Test Statistics for VAR - Segment 2

Univariate Tests by Equation:
Test Multivariate BTC LTC XRP

LB(1) 0.46∗∗∗ 0.10 0.03 0.01
LB(2) 27.05∗∗∗ 5.85∗ 1.79 8.65∗∗
LB(3) 41.55∗∗∗ 6.47∗ 3.04 9.89∗∗
LB(4) 58.17∗∗∗ 6.62 3.18 11.00∗∗
LB(5) 64.32∗∗∗ 9.26∗ 4.91 11.02∗
LB(6) 75.57∗∗∗ 11.96∗ 4.96 11.76∗
LB(7) 84.12∗∗∗ 12.01 5.09 11.97
LB(10) 106.62∗∗ 13.10 7.41 12.91
ARCH(1) 188.34∗∗∗ 22.48∗∗∗ 58.09∗∗∗ 9.85∗∗∗
ARCH(2) 272.11∗∗∗ 25.89∗∗∗ 58.15∗∗∗ 10.91∗∗∗
ARCH(3) 316.87∗∗∗ 30.37∗∗∗ 58.40∗∗∗ 11.15∗∗
ARCH(4) 369.52∗∗∗ 30.37∗∗∗ 61.45∗∗∗ 12.26∗∗
ARCH(5) 409.11∗∗∗ 30.81∗∗∗ 61.56∗∗∗ 12.20∗∗
ARCH(6) 469.18∗∗∗ 31.06∗∗∗ 61.40∗∗∗ 13.88∗∗
ARCH(7) 492.67∗∗∗ 31.57∗∗∗ 61.54∗∗∗ 13.89∗
ARCH(10) 675.44∗∗∗ 37.09∗∗∗ 62.15∗∗∗ 21.94∗∗

JB 4228.79∗∗∗ 660.94∗∗∗ 2723.82∗∗∗ 2557.50∗∗∗
Skewness 98.68∗∗∗ 0.52∗∗∗ −0.15 1.27∗∗∗
Kurtosis 4130.10∗∗∗ 9.96∗∗∗ 17.29∗∗∗ 16.61∗∗∗

Notes: LB, ARCH, JB, Skewness, and Kurtosis indicate Ljung–Box test for
autocorrelation, ARCH test for autoregressive conditional heteroskedasticity,
Jarque–Bera test for normality, Skewness test for only skewness, and Kurtosis
test for only kurtosis respectively. Values in parenthesis indicate the lag length
used in LB and ARCH tests. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the
10%, 5%, and 1% levels respectively.

Table 15: Granger–Causality Test Statistics - Segment 2

BTC LTC XRP

BTC 0.63 2.65
LTC 0.34 2.05
XRP 2.69 2.57
Notes: Value in each cell indicates the test statistics for the hy-
pothesis H0 that is the row variable does not Granger–cause
the column variable. ∗, ∗∗, and ∗∗∗ indicate statistical signifi-
cance at the 10%, 5%, and 1% levels respectively.
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Notes: All variables are in the rate of return form in the estimation, but the interpretation of IRFs is in percentage point change with a 90% confidence interval generated with 10000 bootstrap replications. 

(a) Response of All Variables to a One-Percentage-Point Positive Shock in Rate of Return Bitcoin Price - Segment 2
Figure 4: Impulse Responses Analysis - Segment 2
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Notes: All variables are in the rate of return form in the estimation, but the interpretation of IRFs is in percentage point change with a 90% confidence interval generated with 10000 bootstrap replications. 

(b) Response of All Variables to a One-Percentage-Point Positive Shock in Rate of Return Litecoin Price - Segment 2
Figure 4 (continued)
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Notes: All variables are in the rate of return form in the estimation, but the interpretation of IRFs is in percentage point change with a 90% confidence interval generated with 10000 bootstrap replications. 

(c) Response of All Variables to a One-Percentage-Point Positive Shock in Rate of Return Ripple Price - Segment 2
Figure 4 (continued)
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Table 16: VAR Results - Segment 3

Equation:
BTC LTC XRP

Constant 0.364∗∗ 0.727∗∗ 0.915
BTC𝑡−1 0.223∗∗∗ −0.035 −0.325∗
LTC𝑡−1 0.044 0.221∗∗∗ 0.401∗∗∗
XRP𝑡−1 0.018 0.012 0.176∗∗∗

Observations 303 303 303
Residual Std. Error 3.140 5.783 9.461
R2 0.081 0.048 0.095
Adjusted R2 0.072 0.039 0.086
F Statistic 8.769∗∗∗ 5.056∗∗∗ 10.454∗∗∗

Notes: All the roots are inside the unit circle, and the system is
dynamically stable. ∗, ∗∗, and ∗∗∗ indicate statistical significance
at the 10%, 5%, and 1% levels respectively.
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Table 17: Diagnostic Test Statistics for VAR - Segment 3

Univariate Tests by Equation:
Test Multivariate BTC LTC XRP

LB(1) 1.46∗∗∗ 1.12 0.11 0.22
LB(2) 19.76∗∗ 15.02∗∗∗ 3.02 0.63
LB(3) 70.16∗∗∗ 15.11∗∗∗ 3.21 8.04∗∗
LB(4) 88.81∗∗∗ 15.12∗∗∗ 3.75 8.60∗
LB(5) 95.61∗∗∗ 15.23∗∗∗ 3.77 9.12
LB(6) 108.51∗∗∗ 16.18∗∗ 4.75 12.30∗
LB(7) 118.36∗∗∗ 16.46∗∗ 5.16 12.83∗
LB(10) 163.64∗∗∗ 18.29∗ 11.08 31.49∗∗∗

ARCH(1) 160.08∗∗∗ 68.01∗∗∗ 1.15 0.67
ARCH(2) 256.03∗∗∗ 79.17∗∗∗ 1.15 12.40∗∗∗
ARCH(3) 500.08∗∗∗ 79.22∗∗∗ 1.58 12.46∗∗∗
ARCH(4) 587.59∗∗∗ 78.87∗∗∗ 1.70 12.41∗∗
ARCH(5) 647.00∗∗∗ 83.29∗∗∗ 1.68 12.40∗∗
ARCH(6) 689.07∗∗∗ 82.94∗∗∗ 1.71 12.35∗
ARCH(7) 731.28∗∗∗ 83.72∗∗∗ 3.39 12.35∗
ARCH(10) 860.78∗∗∗ 86.68∗∗∗ 3.68 12.81
JB 30456.29∗∗∗ 129.05∗∗∗ 3841.57∗∗∗ 22522.17∗∗∗
Skewness 1673.42∗∗∗ −0.44∗∗∗ 2.61∗∗∗ 4.57∗∗∗
Kurtosis 28782.87∗∗∗ 6.07∗∗∗ 19.65∗∗∗ 44.24∗∗∗

Notes: LB, ARCH, JB, Skewness, and Kurtosis indicate Ljung–Box test for
autocorrelation, ARCH test for autoregressive conditional heteroskedasticity,
Jarque–Bera test for normality, Skewness test for only skewness, and Kurtosis
test for only kurtosis respectively. Values in parenthesis indicate the lag length
used in LB and ARCH tests. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the
10%, 5%, and 1% levels respectively.

Table 18: Granger–Causality Test Statistics - Segment 3

BTC LTC XRP

BTC 0.09 2.99∗
LTC 1.50 14.00∗∗∗
XRP 0.92 0.11
Notes: Value in each cell indicates the test statistics for the hy-
pothesis H0 that is the row variable does not Granger–cause the
column variable. ∗, ∗∗, and ∗∗∗ indicate statistical significance at
the 10%, 5%, and 1% levels respectively.
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Notes: All variables are in the rate of return form in the estimation, but the interpretation of IRFs is in percentage point change with a 90% confidence interval generated with 10000 bootstrap replications. 

(a) Response of All Variables to a One-Percentage-Point Positive Shock in Rate of Return Bitcoin Price - Segment 3
Figure 5: Impulse Responses Analysis - Segment 3
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Notes: All variables are in the rate of return form in the estimation, but the interpretation of IRFs is in percentage point change with a 90% confidence interval generated with 10000 bootstrap replications. 

(b) Response of All Variables to a One-Percentage-Point Positive Shock in Rate of Return Litecoin Price - Segment 3
Figure 5 (continued)
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Notes: All variables are in the rate of return form in the estimation, but the interpretation of IRFs is in percentage point change with a 90% confidence interval generated with 10000 bootstrap replications. 

(c) Response of All Variables to a One-Percentage-Point Positive Shock in Rate of Return Ripple Price - Segment 3
Figure 5 (continued)
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Appendix

A R Version Information

• R version 3.3.3 (2017-03-06), x86_64-apple-darwin13.4.0

• Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: aod 1.3, bestglm 0.36, bitops 1.0-6, boot 1.3-20, CADFtest 0.3-3,
car 2.1-6, checkpoint 0.4.3, classInt 0.1-24, cowplot 0.9.2, devtools 1.13.4,
downloader 0.4, dplyr 0.7.4, dygraphs 1.1.1.4, dynlm 0.3-5, fBasics 3042.89, FitAR 1.94,
forecast 8.2, Formula 1.2-2, fUnitRoots 3042.79, ggplot2 2.2.1.9000, ggthemes 3.4.0,
gridExtra 2.3, gtable 0.2.0, gvlma 1.0.0.2, Hmisc 4.1-1, knitr 1.19, latex2exp 0.4.0,
lattice 0.20-35, latticeExtra 0.6-28, leaps 3.0, lgarch 0.6-2, lmtest 0.9-35, ltsa 1.4.6,
lubridate 1.7.1, magrittr 1.5, MASS 7.3-47, moments 0.14, NCmisc 1.1.5, NLP 0.1-11,
normtest 1.1, nortest 1.0-4, pastecs 1.3-18, plyr 1.8.4, Quandl 2.9.0, RColorBrewer 1.1-2,
RCurl 1.95-4.10, reshape 0.8.7, reshape2 1.4.3, rvest 0.3.2, sandwich 2.4-0,
scales 0.5.0.9000, seasonal 1.6.1, sp 1.2-6, stargazer 5.2.1, stringi 1.1.6, stringr 1.2.0,
strucchange 1.5-1, survival 2.41-3, tidyr 0.7.2, tikzDevice 0.10-1, timeDate 3042.101,
timeSeries 3042.102, tm 0.7-3, tsDyn 0.9-44, tseries 0.10-42, urca 1.3-0, vars 1.5-2,
x13binary 1.1.39-1, XLConnect 0.2-14, XLConnectJars 0.2-14, xml2 1.1.1, xtable 1.8-2,
xts 0.10-1, zoo 1.8-1

• Loaded via a namespace (and not attached): acepack 1.4.1, assertthat 0.2.0,
backports 1.1.2, base64enc 0.1-3, bindr 0.1, bindrcpp 0.2, checkmate 1.8.5, class 7.3-14,
cluster 2.0.6, codetools 0.2-15, colorspace 1.3-2, curl 3.1, data.table 1.10.4-3,
digest 0.6.15, e1071 1.6-8, filehash 2.4-1, foreach 1.4.4, foreign 0.8-69, fracdiff 1.4-2,
glmnet 2.0-13, glue 1.2.0, grpreg 3.1-2, htmlTable 1.11.2, htmltools 0.3.6,
htmlwidgets 1.0, httr 1.3.1, iterators 1.0.9, jsonlite 1.5, lazyeval 0.2.1, lme4 1.1-15,
Matrix 1.2-11, MatrixModels 0.4-1, memoise 1.1.0, mgcv 1.8-22, minqa 1.2.4,
mnormt 1.5-5, munsell 0.4.3, nlme 3.1-131, nloptr 1.0.4, nnet 7.3-12, parallel 3.3.3,
pbkrtest 0.4-7, pkgconfig 2.0.1, proftools 0.99-2, purrr 0.2.4, quadprog 1.5-5,
quantmod 0.4-12, quantreg 5.34, R6 2.2.2, Rcpp 0.12.14, rJava 0.9-9, rlang 0.1.6,
rpart 4.1-11, rstudioapi 0.7, slam 0.1-40, SparseM 1.77, spatial 7.3-11, splines 3.3.3,
tibble 1.3.4, tools 3.3.3, tseriesChaos 0.1-13, TTR 0.23-2, withr 2.1.1, yaml 2.1.16
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B GAUSS Version Information

GAUSS software used in this study is version 16.04 build 4222.

C Additional Tables and Figures
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Figure 6: Number of Cryptocurrencies Listed
Note: Based on weekly snapshots from April 28, 2013 to July 30, 2017 (CoinMarketCap, 2017a).
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Table 19: Top Cryptocurrencies by Market Capitalization

# Cryptocurrency Symbol Market Cap. Price Circulating Supply Volume(24h) % Market Cap. % Volume(24h)

1 Bitcoin BTC $45, 142, 382, 113 $2, 739.43 16, 478, 750 $723, 314, 000 50.43 36.20
2 Ethereum ETH $18, 901, 688, 291 $201.79 93, 670, 558 $774, 864, 000 21.12 38.78
3 Ripple XRP $6, 385, 947, 908 $0.17 38, 333, 090, 674 $58, 993, 700 7.13 2.95
4 Litecoin LTC $2, 140, 008, 002 $40.96 52, 240, 932 $87, 295, 000 2.39 4.37
5 NEM XEM $1, 497, 978, 000 $0.17 8, 999, 999, 999 $2, 272, 910 1.67 0.11
6 Ethereum Classic ETC $1, 317, 774, 969 $14.01 94, 057, 584 $43, 468, 200 1.47 2.18
7 Dash DASH $1, 316, 414, 649 $176.52 7, 457, 679 $27, 246, 600 1.47 1.36
8 IOTA MIOTA $732, 914, 884 $0.26 2, 779, 530, 283 $3, 213, 680 0.82 0.16
9 Monero XMR $610, 276, 308 $41.06 14, 861, 481 $10, 543, 600 0.68 0.53

10 Stratis STRAT $484, 611, 812 $4.92 98, 483, 723 $10, 166, 600 0.54 0.51
11 EOS EOS $448, 698, 302 $1.78 251, 649, 328 $30, 716, 300 0.50 1.54
12 BitConnect BCC $391, 419, 688 $62.10 6, 303, 471 $2, 246, 190 0.44 0.11
13 NEO ANS $359, 661, 000 $7.19 50, 000, 000 $9, 552, 000 0.40 0.48
14 Zcash ZEC $333, 150, 840 $179.75 1, 853, 381 $17, 460, 700 0.37 0.87
15 BitShares BTS $331, 719, 278 $0.13 2, 597, 340, 000 $21, 350, 400 0.37 1.07
16 Qtum QTUM $330, 167, 540 $5.60 59, 000, 000 $3, 721, 790 0.37 0.19
17 Tether USDT $319, 919, 759 $1.00 319, 501, 213 $68, 103, 400 0.36 3.41
18 Veritaseum VERI $296, 991, 550 $148.03 2, 006, 279 $583, 892 0.33 0.03
19 Steem STEEM $295, 569, 011 $1.24 238, 312, 137 $847, 769 0.33 0.04
20 Waves WAVES $287, 822, 000 $2.88 100, 000, 000 $1, 705, 820 0.32 0.09
Notes: Downloaded on July 30, 2017 19:25 UTC from CoinMarketCap (2017b). All monetary values are in nominal prices.
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Table 20: Top Cryptocurrencies by Monthly Volume

# Cryptocurrency Symbol Volume(1d) Volume(7d) Volume(30d) % Volume(1d) % Volume(7d) % Volume(30d)

1 Bitcoin BTC $732, 328, 000 $5, 996, 735, 936 $30, 812, 284, 864 35.78 40.69 31.64
2 Ethereum ETH $804, 847, 000 $4, 140, 150, 592 $29, 369, 701, 888 39.33 28.09 30.16
3 Litecoin LTC $88, 956, 400 $738, 573, 736 $10, 253, 069, 960 4.35 5.01 10.53
4 Ethereum Classic ETC $44, 472, 100 $275, 607, 652 $4, 240, 702, 180 2.17 1.87 4.35
5 Ripple XRP $60, 836, 900 $468, 203, 406 $3, 661, 316, 034 2.97 3.18 3.76
6 Tether USDT $69, 395, 600 $665, 443, 864 $3, 550, 181, 728 3.39 4.52 3.65
7 EOS EOS $31, 162, 100 $288, 444, 644 $2, 785, 866, 732 1.52 1.96 2.86
8 BitShares BTS $21, 765, 300 $321, 618, 252 $1, 800, 496, 348 1.06 2.18 1.85
9 Dash DASH $27, 640, 300 $248, 231, 670 $1, 329, 233, 470 1.35 1.68 1.36

10 Zcash ZEC $17, 774, 600 $120, 363, 746 $676, 787, 265 0.87 0.82 0.69
11 Status SNT $10, 042, 500 $172, 151, 612 $598, 315, 157 0.49 1.17 0.61
12 NEO ANS $9, 801, 840 $86, 537, 825 $562, 275, 387 0.48 0.59 0.58
13 FirstBlood 1ST $1, 279, 340 $20, 419, 337 $450, 306, 921 0.06 0.14 0.46
14 Qtum QTUM $3, 816, 580 $69, 966, 440 $403, 635, 741 0.19 0.47 0.41
15 Monero XMR $10, 534, 800 $91, 613, 111 $392, 988, 265 0.51 0.62 0.40
16 Siacoin SC $4, 618, 670 $48, 851, 413 $337, 054, 412 0.23 0.33 0.35
17 Stratis STRAT $10, 598, 700 $77, 749, 575 $332, 690, 901 0.52 0.53 0.34
18 Stellar Lumens XLM $3, 927, 890 $41, 122, 671 $307, 961, 304 0.19 0.28 0.32
19 GXShares GXS $1, 628, 640 $34, 253, 032 $290, 289, 067 0.08 0.23 0.30
20 DigiByte DGB $8, 959, 530 $77, 862, 286 $262, 422, 963 0.44 0.53 0.27
Notes: Downloaded on July 30, 2017 19:17 UTC from CoinMarketCap (2017c). All monetary values are in nominal prices.
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Figure 7: Market Capitalization by Cryptocurrency

Note: Based on nominal weekly prices from April 28, 2013 to July 30, 2017 (CoinMarketCap, 2017a).
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(a) Bitcoin, Selected Coins and Other Coins
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(b) Bitcoin vs. Selected Coins
Figure 8: Market Capitalization Share by Cryptocurrency

Note: Based on nominal weekly prices from April 28, 2013 to July 30, 2017 (CoinMarketCap, 2017a).

55

mailto:omer.kara.ylsy@gmail.com


DRAFT

[g
it]

•R
ev

is
io

n:
8e

c0
81

b
•D

at
e:

20
21

-1
0-

21
14

:5
3:

53
+0

30
0

•A
ut

ho
r:

O
m

er
Ka

ra
•E

-m
ai

l:
om

er
.k

ar
a.

yl
sy

@
gm

ai
l.c

om

$0

$1bn

$2bn

$3bn

$4bn

$5bn

$6bn

07−01−2013 01−01−2014 07−01−2014 01−01−2015 07−01−2015 01−01−2016 07−01−2016 01−01−2017 07−01−2017
Time

Vo
lu

m
e

All Coins  BTC  Selected Coins  Other Coins  

(a) All Coins, Bitcoin, Selected Coins and Other Coins
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(b) Selected Coins
Figure 9: Volume by Cryptocurrency

Note: Based on nominal weekly prices from April 28, 2013 to July 30, 2017 (CoinMarketCap, 2017a).

56

mailto:omer.kara.ylsy@gmail.com


DRAFT

[g
it]

•R
ev

is
io

n:
8e

c0
81

b
•D

at
e:

20
21

-1
0-

21
14

:5
3:

53
+0

30
0

•A
ut

ho
r:

O
m

er
Ka

ra
•E

-m
ai

l:
om

er
.k

ar
a.

yl
sy

@
gm

ai
l.c

om

%0

%20

%40

%60

%80

%100

07−01−2013 01−01−2014 07−01−2014 01−01−2015 07−01−2015 01−01−2016 07−01−2016 01−01−2017 07−01−2017
Time

Vo
lu

m
e 

S
ha

re
BTC  Selected Coins  Other Coins  

(a) Bitcoin, Selected Coins and Other Coins
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Figure 10: Volume Share by Cryptocurrency

Note: Based on nominal weekly prices from April 28, 2013 to July 30, 2017 (CoinMarketCap, 2017a).
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(a) Rate of Return Bitcoin Price
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(b) Rate of Return Litecoin Price
Figure 11: Plots of All Variables in Rate of Return Form
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(c) Rate of Return Ripple Price
Figure 11 (continued)
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Figure 12: Plots of All Variables Together in Rate of Return Form
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